: : Книги : :
: : Военная тематика : :
: : Для детей и родителей : :
: : Увлечение и хобби : :
: : Компьютерная литература : :
: Художественная литература :
: : Наука и образование : :
: : Гуманитарные науки : :
: : Естественные науки : :
: : Инженерные науки : :

Обратная связьСвязь с администрацией

: : Видеоуроки : :
: : Аудиокниги : :
: : Журналы : :
: : Опрос сайта : :
Хотели бы Вы видеть у нас на сайте обучающие видео?
Да!
Нет, Я и так умный(ая)!
: : Популярное : :

: : Облако тегов : :
: : Календарь : :
«    Декабрь 2016    »
ПнВтСрЧтПтСбВс
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 

Скачать книгу Лекции об уравнениях с частными производными бесплатно

 
Раздел: Книги » Наука и образование: » Точные и инженерные науки: » Математика

Лекции об уравнениях с частными производными


Название: Лекции об уравнениях с частными производными
Автор: Петровский И.Г.
Издательство: Физматлит
Год издания: 1961
Страниц: 401
Язык: русский
Формат: djvu
Качество: хорошее
Размер: 8.7 Мб

Автор этой книги является основоположником современной теории дифференциальных уравнений. Основу книги составили лекции, прочитанные студентам-математикам механико-математического факультета Московского государственного университета в тридцатых годах двадцатого столетия. В книге рассматриваются три типа дифференциальных уравнений в частных производных: эллиптические, параболические и гиперболические. Для каждого типа исследуются вопросы существования и единственности решения и его непрерывной зависимости от заданных начальных и граничных условий.
Книга может быть рекомендована студентам математических и естественно-научных специальностей, в которых требуется знать и использовать уравнения в частных производных.

Содержание:

Глава I Введение Классификация уравнений

* 1 Определения Примеры
* 2 Задача Коши Теорема Ковалевской
* 3 Обобщение задачи Коши Понятие о характеристике
* 4 О единственности решения задачи Коши в области неаналитических функции
* 5 Приведение к каноническому виду в точке и классификация уравнений второго порядка с одной неизвестной функцией
* 6 Приведение к каноническому виду уравнения с частными производными второго порядка по двум независимым переменным в окрестности точки
* 7 Приведение к каноническому виду системы линейных уравнений с частными производными первого порядка по двум независимым переменным


Глава II Гиперболические уравнения

* Раздел I
* ЗАДАЧА КОШИ В ОБЛАСТИ НЕАНАЛИТИЧЕСКИХ ФУНКЦИЙ
* 8 Корректность постановки задачи Коши
* 9 Понятие об обобщенных решениях
* 10 Задача Коши для гиперболических систем с двумя независимыми переменными
* 11 Задача Коши для волнового уравнения Теорема о единственности решения
* 12 Формулы, дающие решение задачи Коши для волнового уравнения
* 13 Исследование формул, дающих решение задачи Коши
* 14 Преобразования Лоренца
* 15 Математические основы специальной теории относи тельности
* 16 Обзор основных фактов в теории задачи Коши и некоторые исследования для общих гиперболических уравнений
* Раздел II КОЛЕРАЦИЯ ОГРАНИЧЕННЫХ TЕЛ
* 17 Введение
* 18 Единственность решения смешанной задачи
* 19 Непрерывная зависимость решения от начальных условий
* 20 Метод Фурье для уравнения струны
* 21 Общий метод Фурье (предварительное рассмотрение)
* 22 Общие свойства собственных функций и собственных значений
* 23 Обоснование метода Фурье
* 24 Применение функции Грина к задаче о собственных значениях и к обоснованию метола Фурье
* 25 Изучение колебаний мембраны
* 26 Дополнительные сведения о собственных функциях и о разрешимости смешанной задачи для гиперболических уравнений


Глава III Эллиптические уравнения

* 27 Введение
* 28 Свойство максимума и минимума и ею следствия
* 29 Решение задачи Дирихле для круга
* 30 Теоремы об основных свойствах гармонических функций
* 31 Доказательство существования решения задачи Дирихле
* 32 Внешняя задача Дирихле
* 33 Вторая краевая задача
* 34 Теория потенциала
* 35 Решение краевых задач с помощью потенциалов
* 36 Метод сеток для приближенного решения задачи Дирихле
* 37 Обзор некоторых результатов для более общих эллиптических уравнений


Глава IV Параболические уравнения

* 38 Первая краевая задача Теорема о максимуме и минимуме
* 39 Решение первой краевой задачи для прямоугольника методом Фурье
* 40 Задача Коши
* 41 Обзор некоторых дальнейших исследований уравнений параболического типа
* Дополнение
* 42 Решение первой краевой задачи для уравнения теплопроводности методом сеток 43 Замечания о методе сеток


  • Автор: houpperwz55
  • Комментариев: 0
  • Просмотров: 777 |

На нашем сайте вы сможете скачать книги бесплатно. Самые интересные книги и журналы есть только у нас!

Абсолютно все ссылки, которые размещены на нашем сайте, представлены исключительно для ознакомительного просмотра и расположены на сторонних серверах. Файлы которые хранятся на чужих серверах, сайт MirBukv.com не имеет совершенно никакого отношения.